
GWAtoolbox

An R package for the fast processing of data from

Genome-Wide Association Studies

Christian Fuchsberger Daniel Taliun Cristian Pattaro

18-03-2013

1



Contents

1 Introduction 4

2 Installation 4
2.1 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Unix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The Quality Control Workflow 7

4 GWAS Data Files 9

5 The Input Script 9
5.1 Listing the Input Data Files . . . . . . . . . . . . . . . . . . . . . 10
5.2 Describing the Input Data Columns . . . . . . . . . . . . . . . . 10

5.2.1 Field Separator . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2.2 Missing Values . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.3 Column Names . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.4 Case Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3 Specifying Data Filters . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.1 Implausible Values Filters . . . . . . . . . . . . . . . . . . 13
5.3.2 High Quality Filters . . . . . . . . . . . . . . . . . . . . . 14
5.3.3 Plotting Filters . . . . . . . . . . . . . . . . . . . . . . . . 15

5.4 Controlling The Output . . . . . . . . . . . . . . . . . . . . . . . 16
5.4.1 Output File Names . . . . . . . . . . . . . . . . . . . . . . 16
5.4.2 Verbosity Level For Graphical Output . . . . . . . . . . . 16
5.4.3 Number And Content Of Plots . . . . . . . . . . . . . . . 16

6 The Output Files 17

7 Example 19

8 Parallel Processing 21

9 Between-study comparisons 21
9.1 Comparing skewness and kurtosis of effect size distribution . . . 21
9.2 Precision of the effect estimates by sample size . . . . . . . . . . 23

10 Additional Tools 24
10.1 GWAS Data Files Formatting . . . . . . . . . . . . . . . . . . . . 24

10.1.1 Input Script . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.1.2 Renaming Columns . . . . . . . . . . . . . . . . . . . . . 26
10.1.3 Ordering Columns . . . . . . . . . . . . . . . . . . . . . . 26
10.1.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
10.1.5 Inflation Factor and Genomic Control . . . . . . . . . . . 28
10.1.6 Effective Sample Size . . . . . . . . . . . . . . . . . . . . . 28

10.2 GWAS Data Files Annotation . . . . . . . . . . . . . . . . . . . . 28
10.2.1 Input Script . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.2.2 Specifying The Input Data Files . . . . . . . . . . . . . . 30
10.2.3 Specifying The Regions Files . . . . . . . . . . . . . . . . 30

2



10.2.4 Specifying The Map Files . . . . . . . . . . . . . . . . . . 31
10.2.5 Specifying Column Names in Input Data Files . . . . . . 31
10.2.6 Specifying Column Names in Regions Files . . . . . . . . 32
10.2.7 Specifying Column Names in Map Files . . . . . . . . . . 33
10.2.8 Specifying Window Size For Annotation . . . . . . . . . . 33
10.2.9 Specifying Output Format . . . . . . . . . . . . . . . . . . 34

Index 36

3



1 Introduction

GWAtoolbox is an R package for processing data originated from Genome-
Wide Association Studies (GWAS). GWAS have become increasingly popular in
the last years, leading to the discovery of hundreds of common genetic variants
affecting the risk of diseases (such as diabetes, hypertension, chronic kidney
disease, etc.) or the level of quantitative biological parameters.

Results from GWAS typically consist of large files where, for each single nu-
cleotide polymorphism (SNP), statistics related to the association between the
SNP and the studied trait are stored. The number of SNPs which is currently
being analyzed in most GWAS is in excess of 2.5 Million and is expected to
increase rapidly. For each individual SNP, the minimal information stored con-
sists of the SNP unique name, chromosomal position, genotype (reference and
non-reference alleles), frequency of the reference allele, SNP effect size, its stan-
dard error, and p-value. Additional information such as minor allele frequency
(MAF) and imputation quality are often provided. As a consequence, the typi-
cal dimension of GWAS result files is of >2.5 Million rows by >10 columns, for
a total file size which is often larger than 300 Mbytes.

With the aim of detecting common or less common genetic variants with
modest effects, it is now common practice to pool results from individual studies
into meta-analysis efforts which not rarely involve dozens of studies. In these
consortia initiatives, each individual study contributes from one to several files,
either because multiple traits are being analyzed or because different analyses
on the same trait are needed. Consequently, data analysts working in these
consortia have to deal with a massive amount of files which need to be quality
controlled to avoid problems during the meta-analysis process. As a result of
the quality control (QC) process, some files could be found to be corrupted
or erroneous so that new data upload is needed from individual studies. In
this way, the loop between the consortium and the individual study analyst
originates multiple file checks, until a satisfactory data quality is achieved.

When working with such large datasets in R, simple operations such as up-
loading the GWAS files into the R working space, file management, and data
plotting, can take a considerable amount of time, and a systematic QC of hun-
dreds of GWAS files can be unfeasible or may require several weeks.

The GWAtoolbox provides a set of instruments to simplify the data handling
in the framework of meta-analyses of GWA data. The function gwasqc() is capa-
ble to process a high number of GWAS data files in a single run, and producing
several QC reports and figures. Routines for the between-study comparison are
also provided to check systematic difference between files. In addition, the pack-
age contains annotation and graphical tools to assist the result interpretation.

2 Installation

The GWAtoolbox package can be downloaded from http://www.eurac.edu/

GWAtoolbox.html. It requires R version 2.15.0 or higher. The installation
procedure depends on the host operating system and user privileges. In the
following, detailed installation instructions for a wide range of settings are pro-
vided.

4

http://www.eurac.edu/GWAtoolbox.html
http://www.eurac.edu/GWAtoolbox.html


2.1 Windows

GWAtoolbox for Windows is distributed in compiled binary format. Installation:

1. Download the latest version of the package: GWAtoolbox X.Y.Z.zip.

2. Start the R program.

3a. If you have administrator privileges, you can install the package to the
main R library:

i. Execute the command:

install.packages("path/to/GWAtoolbox_X.Y.Z.zip",

repos=NULL)

where path/to is the directory where the package was downloaded.

ii. Load the package in R with the command:

library(GWAtoolbox)

3b. If you do NOT have administrator privileges:

i. Execute the command:

install.packages("path/to/GWAtoolbox_X.Y.Z.zip",

lib="path/to/install/directory",

repos=NULL)

where path/to is the directory where the package was downloaded,
and path/to/install/directory is the path with your install di-
rectory.

ii. Load the package in R with command:

library(GWAtoolbox, lib.loc =

"path/to/install/directory")

2.2 Unix

GWAtoolbox for Unix is distributed in source format and, therefore, it needs
to be compiled on the user machine. This requires the C/C++ compilers to
be available on the system. If the requirement is fulfilled, the package can be
installed as follows:

1. Download the latest package version GWAtoolbox X.Y.Z.tar.gz.

2a. If you have administrator privileges, you can install packages to the main
R library:

i. In the Unix shell execute the command:

R CMD INSTALL path/to/GWAtoolbox_X.Y.Z.tar.gz

where path/to is the directory where the package was downloaded.

ii. Start the R program and load the package with the command:

library(GWAtoolbox)

2b. If you do NOT have administrator privileges, follow the following steps:

5



i. In the Unix shell execute the single line command:

R CMD INSTALL path/to/GWAtoolbox_X.Y.Z.tar.gz

-l path/to/install/directory

where path/to is the directory where the package was downloaded,
and path/to/install/directory is the path with your install di-
rectory.

ii. Start the R program and load the package with the command:

library(GWAtoolbox, lib.loc="path/to/install/directory")

2.3 Mac OS X

GWAtoolbox for Mac OS X is distributed in compiled binary format. The fol-
lowing steps describe the installation procedure:

1. Download the latest package version GWAtoolbox X.Y.Z.tar.gz.

2a. To install from the Mac OS X shell (Terminal):

i. If you have administrator privileges, you can install packages to the
main R library:

A. In the Mac OS X shell execute the command:

R CMD INSTALL path/to/GWAtoolbox_X.Y.Z.tar.gz

where path/to is the directory where the package was down-
loaded.

B. Start the R program and load the package with the command:

library(GWAtoolbox)

ii. If you do NOT have administrator privileges:

A. In the Mac OS X shell execute the single line command:

R CMD INSTALL path/to/GWAtoolbox_X.Y.Z.tar.gz

-l path/to/install/directory

where path/to is the directory where the package was down-
loaded, and path/to/install/directory is the path with your
install directory.

B. Start the R program and load the package with the command:

library(GWAtoolbox, lib.loc="path/to/install/directory")

2b. To install from R:

i. Start the R program.

ii. If you have administrator privileges, you can install packages to the
main R library:

A. Execute the command:

install.packages("path/to/GWAtoolbox_X.Y.Z.tar.gz",

repos=NULL)

where path/to is the directory where the package was down-
loaded.

B. Load the package in R with the command:

6



library(GWAtoolbox)

iii. If you do NOT have administrator privileges:

A. Execute the command:

install.packages("path/to/GWAtoolbox_X.Y.Z.tar.gz",

lib="path/to/install/directory",

repos=NULL)

where path/to is the directory where the package was down-
loaded, and path/to/install/directory is the path with your
install directory.

B. Load the package in R with the command:

library(GWAtoolbox, lib.loc =

"path/to/install/directory")

3 The Quality Control Workflow

A careful and thorough data QC should be performed before starting any meta-
analysis of GWAS data, especially when many studies are involved. In this
framework, we identified three complementary aspects of a good QC analysis:

1. Formal checking: control that all files that are going to be submitted to
the meta-analysis fulfill some formatting guidelines, including:

• consistency of column names with meta-analysis guidelines;

• presence of the minimal required information;

• data are in a format that can be analyzed (numeric, character, fac-
tor);

• all SNP identification numbers are unique;

• alleles are coded in letters/numbers as expected;

• missing values are coded in a consistent way;

• the field separator is as expected;

• strand information is present and unequivocal;

• the number of chromosomes and chromosome coding are as expected;

2. Quality checking: evaluating the quality of data in each single file. This
includes:

• assessing the presence of unexpected values for some of the items
required for the meta-analysis (e.g.: negative p-values or negative
standard errors);

• assessing p-value inflation and analyzing p-value distribution;

• assessing the distribution of the main summary statistics, including
the effect estimates, their standard errors, genotype imputation qual-
ity, etc.

7



3. Global checking: identification of any systematic bias that may affect the
analysis. This step is aimed to uncover studies that are systematically
different from the others. This may happen when, for instance, analysts
of one study forgot to log-transform the phenotype or apply the wrong
model to the data.

Formal and quality checks of individual studies are performed in GWAtoolbox
using the gwasqc() function. gwasqc() was built to address specific requirements,
specifically:

1. it allows rapid file processing and reporting;

2. it eliminates routine user operations;

3. it allows multi-format reporting, including HTML, CSV, and text files.

The complete QC workflow can be summarized in four basic steps (see Figure
1):

1. collect the GWAS data files;

2. write an input script to process of all GWAS files with the gwasqc() func-
tion;

3. run the QC using gwasqc();

4. analyze the QC results to uncover errors or inconsistencies.

Figure 1: The quality control workflow.

In the next sections we cover each of the four steps and describe the require-
ments for the input files and the precise content of all output files.

8



4 GWAS Data Files

GWAS data are usually stored as delimited text files. The first line of the
file is the header row that describes the content of every column. The field
separator between columns can be any among whitespace, tabulation, comma,
or semicolon. The field separator must be the same for every row in the file,
including the header.

There is a minimum set of columns, that every GWAS data file should con-
tain. In GWAtoolbox, the following information is required for every file:

• Marker name

• Chromosome number or name

• Marker position

• Coded and non-coded allele

• Allele frequency for coded allele

• Strand

• Imputation label

• Imputation quality

• Effect estimate

• Standard error of the effect estimate

• P-value

More non-mandatory items can be included in the data file as, for example,
the study sample size, the SNP call rate for genotyped SNPs, the p-value of the
Hardy-Weinberg equilibrium test for genotyped SNPs, etc.

5 The Input Script

gwasqc() can analyze several GWAS data files consecutively. Instructions are
provided to gwasqc() through a script in a text file. The format of the script
file resembles the METAL input file format∗.

In the input script, the user can list all GWAS file names to be analyzed
and specify the format of each single GWAS file, including column names, field
separator, etc. In the case when more GWAS files are in the same format, file
specifications can be entered only once for all files. Example 1 illustrates the
content of a hypothetical input script file.

Example 1

∗http://www.sph.umich.edu/csg/abecasis/metal/

9



# Description of input data columns

MARKER SNPID

CHR Chromosome

POSITION Position

N n_total

ALLELE coded_allele noncoded_allele

STRAND strand

EFFECT beta

STDERR se

PVALUE pval

FREQLABEL allele_freq_coded_allele

IMPUTED imputed

IMP_QUALITY oevar_imp

# High quality filters

HQ_SNP 0.01 0.3

# Plotting filters

MAF 0.01 0.05

IMP 0.3 0.6

# Prefix for output files

PREFIX res_

# Input file with GWA data

PROCESS input_file.txt

�

5.1 Listing the Input Data Files

The names of the GWAS data files are specified in the input script with the com-
mand PROCESS† If multiple files have to be checked, multiple PROCESS
lines must be specified.

Example 2 The input script contains the following two lines:

PROCESS input_file_1.txt

PROCESS /dir_1/dir_2/input_file_2.csv

QC is applied first to input file 1.txt and then to input file 2.csv. When
files reside on different directories, the full path must be specified. �

5.2 Describing the Input Data Columns

5.2.1 Field Separator

The field separator may be different for each GWAS data file. gwasqc() auto-
matically detects the field separator of each input file based on the first 10 rows.

†GWAtoolbox supports single line feed (’\n’) character or carriage return character (’\r’)
followed by line feed character as the line terminators in the input files.

10



The user has the possibility to specify the separator manually for each GWAS
file using the command SEPARATOR. Table 1 lists all supported separators.

Argument Separator
COMMA comma
TAB tabulation
WHITESPACE whitespace
SEMICOLON semicolon

Table 1: The list of arguments for the SEPARATOR command.

Example 3 In the following input script:

PROCESS input_file_1.txt

SEPARATOR TAB

PROCESS input_file_2.csv

PROCESS input_file_3.txt

the field separator for the input file input file 1.txt is determined auto-
matically by gwasqc(); the separator for the input files input file 2.csv
and input file 3.txt is set to tabulation by the user. �

If the user manually specifies the wrong field separator, then the file(s)
still will be processed with this separator. As a consequence, the mandatory
columns will not be detected and the user will see it in the final report.

5.2.2 Missing Values

By default, gwasqc() assumes that missing values are labeled as NA. However,
the label for missing value can be specified manually by the user with the com-
mand MISSING.

Example 4 In the following input script:

MISSING -

PROCESS input_file_1.txt

MISSING NA

PROCESS input_file_2.csv

the hyphen symbol is set as symbol for missing value for the file in-
put file 1.txt. Afterwards, the coding for missing vaules is changed to
NA and is used to process input file 2.csv. �

5.2.3 Column Names

In table 2 the complete list of default column names for the GWAS data files is
reported. These names identify uniquely the items in the GWAS data file.

11



Default column name(s) Description
MARKER Marker name
CHR Chromosome number or name
POSITION Marker position
ALLELE1, ALLELE2 Coded and non-coded alleles
FREQLABEL Allele frequency for the coded allele
STRAND Strand
IMPUTED Label value indicating if the marker was imputed (1)

or genotyped (0)
IMP QUALITY Imputation quality statistics; this can be differ-

ent depending on the software used for imputation:
MACH’s Rsq, IMPUTE’s properinfo, ...

EFFECT Effect estimate
STDERR Standard error of the effect estimate
PVALUE P-value
HWE PVAL Hardy-Weinberg equilibrium p-value
CALLRATE Genotype callrate
N Sample size
USED FOR IMP Label value indicating if a marker was used for im-

putation (1) or not (0)
AVPOSTPROB Average posterior probability for imputed marker al-

lele dosage

Table 2: The default column names.

Given that different names can be provided with the GWAS data files,
gwasqc() allows to redefine the default values for every input file in the in-
put script. The redefinition command consists of the default column name fol-
lowed by a new column name. To redefine the default column names for coded
and non-coded alleles, the command ALLELE is followed by two new column
names.

Example 5 Let’s assume to have two input files, input file 1.txt and
input file 2.txt. In input file 1.txt, the column names for the effect
estimate and its standard error are beta and SE, respectively. In in-
put file 2.txt, the column name for the effect estimate is the same as in
input file 1.txt, but the column name for the standard error is STDERR.
The correct column redefinitions are as follows:

EFFECT beta

STDERR SE

PROCESS input_file_1.txt

STDERR STDERR

PROCESS input_file_2.csv

First, we redefine column names for the file input file 1.txt. Notice that
the column beta doesn’t need to be redefined for file input file 2.csv.
However, for this file we need to redefine the column STDERR, returning
it to its default name. �

12



Example 6 Consider an input file input file 1.txt with the following
names for ALLELE1 and ALLELE2: myRefAllele and myNonRefAllele.
The new column definition is applied as follows:

ALLELE myRefAllele myNonRefAllele

PROCESS input_file_1.txt

�

5.2.4 Case Sensitivity

By default, gwasqc() assumes that column names of GWAS input files are case
insensitive. For example, the names STDERR, StdErr, and STDErr are all
perfectly equivalent. This behaviour can be changed for every input file in the
input script using the command CASESENSITIVE. Table 3 lists all possible
arguments.

Argument Description
0 Column names are case insensitive (default)
1 Column names are case sensitive

Table 3: The list of arguments for the CASESENSITIVE command.

Example 7 Consider the following commands:

CASESENSITIVE 1

PROCESS input_file_1.txt

CASESENSITIVE 0

PROCESS input_file_2.csv

Column names of input file 1.txt are case sensitive and must correspond
exactly to the default column names; column names of input file 2.csv
are case insensitive. �

5.3 Specifying Data Filters

5.3.1 Implausible Values Filters

Often, there is the necessity to identify implausible values for the statistics
that will be included in the meta-analysis. Implausible values for the effect
estimate, for its standard error, or the p-value are sometimes generated by the
software used for the association testing. For example, in the case of a disease
outcome with a small number of cases or of a SNP with very small MAF,
statistical packages can report inconsistent results due to statistical algorithms
that fail to converge because of data sparseness. Other types of inconsistencies
can originate from errors in the file management.

In these situations, it is important to identify the SNPs with inconsistent
values, so that they can be removed before starting the meta-analysis. gwasqc()
can identify these values by using appropriate threshold values. The number of
SNPs affected by this kind of problems is reported. In addition, these SNPs are

13



excluded from the calculation of the data quality summary statistics.
Implausible value filters are used by gwasqc() to identify implausible values.
Table 4 lists the columns for which the filters can be applied and their default
thresholds.

Default column name Default thresholds
STDERR [0, 100000]
IMP QUALITY (0, 1.5)
PVALUE (0, 1)
FREQLABEL (0, 1)
HWE PVAL (0, 1)
CALLRATE (0, 1)

Table 4: The default implausible value filters.

The default thresholds can be redefined for every column in the input script.
The new thresholds for a column can be specified after the redefinition of the
column name (see Section 5.2.3).

Example 8 Let’s assume that the file input file 1.txt has a standard
error column called STDERR and that the corresponding column in the
input file input file 2.csv is called SE. In addition, the imputation quality
column is defined as oevar imp in both files. The user can redefine the
column names while applying different plausibility filters:

STDERR STDERR 0 80000

IMP_QUALITY oevar_imp 0 1

PROCESS input_file_1.txt

STDERR SE 0 100000

PROCESS input_file_2.csv

The file input file 1.txt has new [0, 80000] thresholds for the standard
error and new (0, 1) thresholds for the imputation quality. For the
file input file 2.csv the thresholds of [0, 100000] will be applied to the
standard error column, while for the imputation quality column the same
filters as for the input file 1.txt will be applied. �

5.3.2 High Quality Filters

In many cases, analysts want to restrict the analyses to SNPs with high impu-
tation quality and with not too small MAF. We call these SNPs ’high quality
SNPs’, that is SNPs for which results should be quite robust. In the special
case, when estimating the genomic inflation factor, lambda, to check for the
presence of cryptic relatedness or hidden population sub-structures, it may be
important to remove SNPs that could artificially inflate the number of significant
hits. Summary statistics are calculated after excluding SNPs with low quality
(CSV report files). Table 5 lists the default thresholds for allele frequency and
imputation quality.

The default thresholds can be redefined with the command HQ SNP for
every input file in the input script. The command is followed by two values:

14



Default column name Default thresholds
FREQLABEL > 0.01
IMP QUALITY > 0.3

Table 5: The default high quality imputation filters.

the first one is the threshold for the MAF and the one is the threshold for the
imputation quality.

Example 9 If we want to define ’high quality SNPs’ those with MAF
> 0.03 and imputation quality > 0.4, we would add the following lines
to the input script:

HQ_SNP 0.03 0.4

PROCESS input_file_1.txt

�

5.3.3 Plotting Filters

The plotting filters are used to select meaningful data to be displayed in the
various summary plots. Each filter allows two threshold levels: each of them is
applied dependently on the plot type and column. Figure 2 (see Section 5.4.3)
shows what data and filters are used when producing plots. Table 6 lists the
default threshold values.

Default column name Default 1st level
thresholds

Default 2nd level
thresholds

FREQLABEL > 0.01 > 0.05
IMP QUALITY > 0.3 > 0.6

Table 6: The default plotting filter.

The default threshold values for MAF and imputation quality can be rede-
fined accordingly with the commands MAF and IMP for the every input file
in the input script.

Example 10 Assume the input script contains the following com-
mands:

MAF 0.02 0.03

IMP 0.3 0.5

PROCESS input_file_1.txt

Here, new SNP quality thresholds are set for plotting results from in-
put file 1.txt. For the first level thresholds, we have selected MAF
> 0.02 and the imputation quality > 0.3, for the second level thresh-
old, MAF > 0.03 and imputation quality > 0.5. �

15



5.4 Controlling The Output

5.4.1 Output File Names

Output file names are defined based on input file names, with the addition of a
specified prefix (all types of output files will share the same prefix). The prefix
can be specified once for all input files, or for every single input file or groups
of input files explicitly using the command PREFIX.

Example 11 Consider the following input script:

PREFIX res_

PROCESS input_file_1.txt

PROCESS input_file_2.csv

PREFIX result_

PROCESS input_file_3.tab

All result output files corresponding to the input files input file 1.txt
and input file 2.csv will be prefixed with res ; result output files corre-
sponding to the input file input file 3.tab will be prefixed with result .
�

5.4.2 Verbosity Level For Graphical Output

The user can control the number of output pictures with the command VER-
BOSITY (see Table 7 for the available options).

Argument Description
1 Lowest verbosity level (default).
2 Highest verbosity level.

Table 7: The list of arguments for the VERBOSITY command.

Example 12 The input script contains the following commands:

VERBOSITY 2

PROCESS input_file_1.txt

VERBOSITY 1

PROCESS input_file_2.csv

The file input file 1.txt is processed with the highest verbosity level and
therefore all figures are generated; input file 2.csv is processed with the
lowest verbosity level and less output figures are generated. �

5.4.3 Number And Content Of Plots

Number and content of the output plots depend on the setting of the plotting
filters (see Section 5.3.3) and on the available information in the input files.
Figure 2 shows all the dependencies. If some dependency is not satisfied because
of missing data or filter setting, then the corresponding plot is not produced or
may be truncated at different levels.

16



Figure 2: The dependencies of graphical outputs on columns and filters.

When multiple files are processed, boxplots from the distributions of the
effect estimates are displayed in a single graph for across-study comparison. It
is possible to specify the width of each box based on one of the other available
information (typically the sample size). As an argument, BOXPLOTWIDTH
requires one of the default column names. If BOXPLOTWIDTH is not spec-
ified all boxplots have the same width.

It is also possible to define labels for each input file, to be used in the plots
instead of the full file names, which could be too long and, therefore, clutter the
plots.

Example 13 Let n total be the column name which identifies the
sample size in the input file input file 1.txt, and samplesize the corre-
sponding name in input file 2.csv. Consider the following input script:

N n_total

PROCESS input_file_1.txt first

N samplesize

PROCESS /dir_1/dir_2/input_file_2.csv second

BOXPLOTWIDTH N

The width of the first boxplot for the input file input file 1.txt depends
on the n total column, while the width of the second boxplot for the
input file input file 2.csv depends on the samplesize column. The labels
”first”and ”second”will be used to label the two studies in the plots. �

6 The Output Files

The typical output of the gwasqc() function consists of the following files:

1. Graphical files (PNG file extension) include histograms and boxplots
of the distribution of the main statistics from each GWAS file: effect es-
timates, imputation quality index, sample size, p-value, allele frequency;

17



QQ-plots of the p-value distribution are also provided to investigate the
presence of study-design bias. See Figure 2 for an exhaustive list of avail-
able plots.

2. Textual report (TXT file extension) contains information on the GWAS
file-format quality and statistics summarizing the distribution of all data
present in the GWAS files (effect estimates, p-values, etc.). The statis-
tics provided in this report can be compared with the graphical output
described above.

3. Comma separated report (CSV file extension) contains summary
statistics for the high quality SNPs, as they have been defined by the
user when setting the parameter HQ SNP in the QC script (see Section
5.3.2). The tabular format of this file is intended to be useful for users
who wants to perform additional analyses and compare results from differ-
ent GWAS files without having to manage the large original GWAS files.
Figure 3 shows an example of such file. For each of the variables listed by

N EFFECT STDERR PVALUE MAF

N 2543887 2542617 2542422 2542617 2543887

N HQ 2448544 2448544 2448544 2448544 2448544

N NAs 0 1270 1270 1270 0

Mean 516 -0.00137 0.295076 0.500823 0.230416

StdDev 0 0.333379 0.158119 0.28873 0.143312

Min 516 -8.76038 0.17353 7.34E-08 0.010001

Max 516 6.12165 2.53341 1 0.5

Median 516 -0.00149 0.233707 0.502629 0.217008

Skewness nan -0.06933 2.886758 -0.00935 0.214034

Kurtosis nan 9.109873 11.14145 -1.20085 -1.18454

IMPUTED IMP QUALITY CALLRATE HWE PVAL STD EFFECT 0.5

N 2543887 2543887 2543887 NA NA

N HQ 2448544 2448544 2448544 NA NA

N NAs 0 0 0 NA NA

Mean 1 0.958868 1 NA NA

StdDev 0 0.097734 0 NA NA

Min 1 0.300006 1 NA NA

Max 1 1.0467 1 NA NA

Median 1 0.994577 1 NA NA

Skewness nan -3.90226 nan NA -0.00587

Kurtosis nan 16.76683 nan NA 3.297394

STD EFFECT 0.75 STD EFFECT 0.95 STD EFFECT 0.99 STD EFFECT 1

N NA NA NA NA

N HQ NA NA NA NA

N NAs NA NA NA NA

Mean NA NA NA NA

StdDev NA NA NA NA

Min NA NA NA NA

Max NA NA NA NA

Median NA NA NA NA

Skewness -0.01036 0.022903 0.040024 -0.07186

Kurtosis 3.822136 4.712606 5.861049 9.066722

Figure 3: The comma separated report file.

columns, summary statistics are reported by row. Specifically:

• N – number of SNPs with available information (i.e. non-missing
values).

• N HQ – number of high quality SNPs with information available
(i.e. non-missing values).

• N NAs – number of SNPs with missing values for the specific field
of interest.

• Mean, StdDev, Min, Max, Median, Skewness, and Kurtosis
are referred to the distribution of the specific field.

18



Columns include:

• N – study sample size.

• EFFECT, STDERR, and PVALUE – summaries of the SNP-
phenotype associations.

• MAF, IMPUTED, IMP QUALITY, CALLRATE, and
HWE PVAL – summaries of the genotype distribution and quality.

• STD EFFECT 0.5, STD EFFECT 0.75,
STD EFFECT 0.95, STD EFFECT 0.99, STD EFFECT 1
– these columns are only of interest for the reported skewness and
kurtosis of the standardized effect estimates (beta/SE). The numbers
0.5, 0.75, 0.95, 0.99, and 1 are referred to the percentage of SNPs
with the highest p-values chosen to study the effect size distribution
(see Section 9.1 for additional details).

4. An HTML report (main.html file) combines both textual and graphical
output, allowing the user to easily surfing across the results and across
the studies included in the QC analysis. In operating systems allowing
graphical interfaces, the HTML document should be the first file to be
opened to investigate the results.

7 Example

This is an embedded R code example. All input files for this example are located
in the subdirectory doc of the installed GWAtoolbox package.

Consider the following five GWAS data files: gwa data example 1.txt,
gwa data example 2.tbl, gwa data example 3.csv, gwa data example 4.txt and
gwa data example 5.csv. The first file contains 16 whitespace-separated
columns:

> t <- read.table("gwa_data_example_1.txt", header = T, nrow = 1, sep = " ")

> colnames(t)

[1] "SNPID" "chr" "position" "coded_all"

[5] "noncoded_all" "strand_genome" "beta" "SE"

[9] "pval" "AF_coded_all" "n_total" "oevar_imp"

[13] "avpostprob" "callrate" "HWE_pval" "used_for_imp"

[17] "imputed"

The second file contains 16 tab-separated columns:

> t <- read.table("gwa_data_example_2.tbl", header = T, nrow = 1, sep = "\t")

> colnames(t)

[1] "SNPID" "chr" "position" "coded_all"

[5] "noncoded_all" "strand_genome" "beta" "StdErr"

[9] "p" "AF_coded_all" "n_total" "oevar_imp"

[13] "avpostprob" "callrate" "HWE_pval" "used_for_imp"

[17] "imputed"

19



Analogously, we can preview the headers of the other three files. To perform
the QC of these files we prepare a simple input script: GWAS script.txt. Below
are listed the commands which were inlcuded in the script:

> cat(readLines("GWASQC_script.txt"), sep = "\n")

# Column names

ALLELE coded_all noncoded_all

CALLRATE callrate

CHR chr

EFFECT beta

FREQLABEL AF_coded_all

HWE_PVAL HWE_pval

IMPUTED imputed

IMP_QUALITY oevar_imp

MARKER SNPID

N n_total

POSITION position

PVALUE pval

STRAND strand_genome

STDERR SE

USED_FOR_IMP used_for_imp

# Plotting filters for the MAF and imputation quality

MAF 0.01 0.05

IMP 0.3 0.5

# Prefix for output files

PREFIX gwasqc_

# Column N controls the width of boxplots

BOXPLOTWIDTH N

# Input file and its short name for labels

PROCESS gwa_data_example_1.txt Study1

PVALUE p

STDERR StdErr

PROCESS gwa_data_example_2.tbl Study2

PROCESS gwa_data_example_3.csv Study3

PVALUE pvalue

PROCESS gwa_data_example_4.txt Study4

PROCESS gwa_data_example_5.csv Study5

When the input script is ready, load the GWAtoolbox library and call the
gwasqc() function as follows:

> library(GWAtoolbox)

> gwasqc("GWASQC_script.txt")

20



8 Parallel Processing

gwasqc() processes GWAS data files sequentially, one after another. It makes
possible to handle very large files on desktop machines with relatively small
amounts of available main memory. pgwasqc() function is analogous to gwasqc()
and processes GWAS data files in parallel. The processing of several files is
distributed among available CPUs at an additional cost of main memory. The
computational time of pgwasqc() highly depends on the configuration of file
storage and synchronization of I/O operations.

9 Between-study comparisons

9.1 Comparing skewness and kurtosis of effect size distri-
bution

Association of genetic markers with continuous or binary phenotypes is generally
assessed by the use of linear models, where an effect estimate and its standard
error are used to summarize the evidence of the association. The effect estimate
is usually represented by the beta coefficient of the linear regression model. For
binary outcome, this correspond to the log(odds ratio) obtained from logistic
regression models. Let’s define with θ our parameter of interest, and with SE(θ)
its standard error. For large sample sizes, under the null hypothesis of no
association, the distribution of θ/SE(θ) ∼ N(0, 1).

In checking the quality of GWA results, we are interested in assessing po-
tential errors arisen during the analytical process or during the file management
process. These errors could origin θ/SE(θ) distributions that are systematically
biased towards positive (or negative) values, or that are over/under-dispersed.
The kurtosis and the skewness indices are the natural candidates to perform this
kind of assessment. Convenient graphical display based on these two indices en-
ables the contemporary plot and comparison of all the studies involved in the
meta-analysis, with consequent identification of studies that are systematically
different from each other.

Under the forms proposed by Cramer [3], the kurtosis and the skewness

indices can be defined as ku =
1
n

∑n

i=1
(xi−x̄)4(

1
n

∑n

i=1
(xi−x̄)2

)2−3 and sk =
1
n

∑n

i=1
(xi−x̄)3(

1
n

∑n

i=1
(xi−x̄)2

) 3
2

.

The skewness index assesses the symmetry of a distribution around its central
value, and the kurtosis index assesses the dispersion of the distribution around
its central value. If θ/SE(θ) ∼ N(0, 1), then for large sample sizes, skθ =
sk
(
θ/SE(θ)

)
→ 0 and kuθ = ku

(
θ/SE(θ)

)
→ 0 (Fisher [4]; Joanes and Gill

[5]).
In a GWAS setting, we can assume that the 50% of SNPs with largest p-

value are not associated with the phenotype of interest and so, they can be
used to represent the null situation. Notice that the 50% of SNPs with worst
p-values correspond to the concept of the genomic control inflation factor, which
is estimated based on the median chi-square distribution from the p-values.

In real world applications, distribution of θ/SE(θ) for 50% worst SNPs is
not normally distributed, because SNPs are not independent each other. This
situation is more pronounced in presence of genotype imputation, which causes
an excess of effect estimetes that are close to 0. For this reason, it is not realistic

21



to expect that kuθ → 0: the distribution is leptokuric, and so kuθ > 0. However,
as long as the studies involved in the meta-analysis used similar imputation
reference platforms, kuθ should be similar for all studies. For what concerns
the skewness, there is no good reason why skθ of the 50% worst SNPs shouldn’t
approximate 0.

Then, for given K studies, we can estimate kuθ,k and skθ,k for k = 1, . . . ,K,
and we can plot the two vectors skθ,[1,...,K] vs. kuθ,[1,...,K] in a Cartesian dia-
gram, with every point representing a different study. We expect all studies to
cluster around the same point at sk = 0, with similar kurtosis values. Studies
that show strong departures from the main cluster could be submitted to de-
tailed investigation in order to detect the reason of such discrepancy. In general,
departures along the sk-axis are more serious than departures on the ku-axis,
because the first ones will introduce systematic bias in the meta-analysis with
one or a few studies that are systematically different from the others, with effect
estimates that are more often in one direction.

This diagnostic plot is shown in Figure 4 where the set of SNPs with 50%
largest p-values is compared with other sets of SNPs with the largest 75%, 95%,
and 100% (i.e. all SNPs are considered) p-values, respectively. Highlighted
are points (studies) that are largely difference from the ones in the cluster.
In the last scenario, all SNPs are included and the bias is given by the SNPs
that are truly associated with the phenotype. Outlier studies, that have been
identified in the 50% scatterplot, are colored in red also in the other situations
for comparison.

Figure 4: The skewness and kurtosis plot.

The GWAtoolbox allows automatic comparison of skewness and kurtosis of

22



effect size distribution between GWA studies. The gwasqc() function estimates
the skewness and kurtosis statistics during the QC workflow and includes them
into the CSV reports. Then, the auxiliary kusk check() function can be used
to export this information to a R data frame and to produce diagnostic plots.
As input, it requires the same script used for gwasqc() and assumes that all
the CSV reports are located in the current working directory. An optional
list consisting of any of integer number among 50, 75, 95, 99, and 100, can be
specified: numbers correspond to the percentage of SNPs to be considered as
representing the null distribution.

Example 14 We report the commands to obtain the scatterplot shown
in Figure 4, when the 50% SNPs with largest p-values is considered.

> W <- kusk_check("GWASQC_script.txt", worst = c(50), plot = TRUE)

> points(W$sk50[W$ku50 > 5], W$ku50[W$ku50 > 5], pch = 22, bg = 2, cex = 2)

> text(W$sk50[W$ku50 > 5], W$ku50[W$ku50 > 5], labels = W$study[W$ku50 > 5], cex = 1, pos = 4)

�

Currently, no automatic method to identify outlier studies is implemented
and that the user needs to define his/her own criteria for the outlier identificaton.

9.2 Precision of the effect estimates by sample size

A different graphical test, that allows the comparison of studies against each
other, is based on the assessment of the distribution of estimates’ precision vs.
study sample size. In general, the average SE(θ) is expected to be inversely pro-
portional to the study sample size. The auxiliary dispersion check() function
plots a scatterplot of the mean(SE(θ)) vs. the median sample size of all studies,
as depicted in the example Figure 5. Over-dispersion is defined as the presence
of larger SEs than expected given the study sample size and under-dispersion
is meant to be the opposite phenomenon. For example, a study with unmod-
eled relatedness or population stratification may present SEs that are smaller
than another study of similar sample size where these issues were accounted for
properly.

The dispersion check() function uses the CSV reports generated by gwasqc().
As input it requires the same script as gwasqc() and assumes that all the CSV
reports files are located in the current working directory. If the study sample
size is missing from GWAS files, then the function has an optional parameter
allowing to specify a vector with all study sample sizes. The function returns
an R data frame with the information extracted from the CSV reports and
produces the diagnostic plot.

Example 15

> Z <- dispersion_check("GWASQC_script.txt", plot=TRUE)

> Z

study mean_se median_n

1 Study1 0.01188491 1201

2 Study2 0.03206312 201

3 Study3 0.01270057 1000

23



Figure 5: Schematic representation of the dispersion plot and its interpretation.

4 Study4 0.02030638 437

5 Study5 0.01532013 721

> text(Z$median_n, Z$mean_se, labels=Z$study, pos=c(2,4,2,1,2))

> Z <- dispersion_check("GWASQC_script.txt", sample_sizes=c(1200, 200, 1000, 500, 700), plot=TRUE)

> Z

study mean_se median_n

1 Study1 0.01188491 1200

2 Study2 0.03206312 200

3 Study3 0.01270057 1000

4 Study4 0.02030638 500

5 Study5 0.01532013 700

> text(Z$median_n, Z$mean_se, labels=Z$study, pos=c(2,4,2,1,2))

�

10 Additional Tools

10.1 GWAS Data Files Formatting

The format of GWAS data files may differ between studies. Inconsistencies in
column names, column separators and column ordering are the most common.
For the automated data analysis it is more convenient to have a uniform format

24



across all the GWAS files of interest. The gwasformat() function and its par-
allel version pgwasformat() allow to quickly transform GWAS data files into a
uniform format. In addition to the possiblity to rename and re-order columns,
these functions calculate effective sample size, inflation factor and apply genomic
control of P-values and standard errors. The column separator is replaced with
tabulation in all processed files.

10.1.1 Input Script

The formatting instructions are provided to gwasformat() through the input
script that is identical to the script required by gwasqc(). Additional commands
are supported allowing to rename and re-order columns, enable/disable genomic
control. Example 16 illustrates the content of a hypothetical input script file.

Example 16

# Rename columns

RENAME SNPID rsId

RENAME chr chrom

RENAME position bp

RENAME SE StdErr

RENAME pval p-value

RENAME p p-value

RENAME pvalue p-value

# Description (meaning) of the columns

ALLELE coded_all noncoded_all

CALLRATE callrate

CHR chrom

EFFECT beta

FREQLABEL AF_coded_all

HWE_PVAL HWE_pval

IMPUTED imputed

IMP_QUALITY oevar_imp

MARKER rsId

N n_total

POSITION bp

PVALUE p-value

STRAND strand_genome

STDERR StdErr

USED_FOR_IMP used_for_imp

AVPOSTPROB avpostprob

# Enable computation of inflation factor and genomic control

GC ON

# Set filters on minor allele frequency and imputation quality

HQ_SNP 0.05 0.4

# Enable column re-ordering and specify the order explicitely

ORDER ON chrom bp rsId strand_genome coded_all noncoded_all

25



# Prefix for output files

PREFIX pgwasformat_

# Input file with GWA data

PROCESS input_file.txt

�

10.1.2 Renaming Columns

The new column names are specified in the input script with the command
RENAME. The command is followed by two words: the first one corresponds
to the column name in the original GWAS file, and the second one corresponds
to the new column name in the resulting formatted GWAS file. The column
names must not contain tabulation or whitespace characters. If column was
renamed, then only the new column name must be used in the rest of the input
script commands.

Example 17 Let’s assume to have three input files: input file 1.txt,
input file 2.csv and input file 3.txt. The files have column named
marker. In file input file 1.txt the column should be renamed to SNPID.
While in files input file 2.csv and input file 3.txt it should be renamed
to rsId. The correct column renaming is as follows:

RENAME marker SNPID

PROCESS input_file_1.txt

RENAME marker rsId

PROCESS input_file_2.csv

PROCESS input_file_3.txt

�

10.1.3 Ordering Columns

By default, gwasformat() doesn’t change column ordering followed in the original
GWAS file. This behaviour can be modified for every input file in the input
script using the command ORDER. Table 8 lists all possible arguments.

Argument Description
OFF The original column ordering is preserved in the

resulting formatted GWAS file (default)
ON Columns are re-ordered following the alphabetical

ordering
ON column 1 column 2 ... Columns are re-ordered following the specified or-

der: column 1 column 2 ... .

Table 8: The list of arguments for the ORDER command.

26



Example 18 Let’s assume to have three input files: input file 1.txt,
input file 2.csv and input file 3.txt. Each file contains the following
columns in the order as they are listed: marker, chromosome, bp. Below
are provided commands to rename the column marker to SNPID and
to switch the ordering mode for every input file:

RENAME marker SNPID

ORDER ON chromosome bp SNPID

PROCESS input_file_1.txt

ORDER OFF

PROCESS input_file_2.csv

ORDER ON

PROCESS input_file_3.txt

For the input file input file 1.txt the columns are re-ordered to: chro-
mosome, bp, SNPID. For the input file input file 2.csv the original col-
umn ordering is preserved: SNPID, chromosome, bp. For the input file
input file 3.txt the columns are re-ordered following the alphabetical
ordering: bp, chromosome, SNPID. �

10.1.4 Filtering

gwasformat() filters SNPs based on minor allele frequency (MAF) and imputa-
tion quality. Table 9 lists the default thresholds. The default threshold values

Default column name Default thresholds
FREQLABEL > 0.01
IMP QUALITY > 0.3

Table 9: The default SNP filters.

can be redefined using the command HQ SNP for every input file in the input
script. The command is followed by two values: the first one corresponds to the
threshold for the minor allele frequency, and the second one corresponds to the
threshold for the imputation quality.

Example 19 If we want to filter SNPs with MAF > 0.03 and with
imputation quality > 0.4, we would add the following lines to the input
script:

HQ_SNP 0.03 0.4

PROCESS input_file_1.txt

�

Example 20 If we want to disable filtering, we would change the
input script as follows:

HQ_SNP 0 0

PROCESS input_file_1.txt

�

27



10.1.5 Inflation Factor and Genomic Control

By default, gwasformat() doesn’t calculate the inflation factor and doesn’t
apply genomic control of P-values and standard errors. This behaviour can
be modified for every input file in the input script using the command
GC/GENOMICCONTROL. Table 10 lists all possible arguments. The in-

Argument Description
OFF The inflation factor is not calculated and genomic control

is not applied (default)
ON The inflation factor is calculated. Genomic control of

PVALUE and STDERR columns is applied, corrected
value are saved to the new columns PVALUE gc and
STDERR gc, accordingly. Has no effect if PVALUE col-
umn is not present.

numeric value The inflation factor is assumed to be equal to the specified
numeric value. Values in PVALUE and STDERR columns
are corrected and saved to the new columns PVALUE gc
and STDERR gc, accordingly.

Table 10: The list of arguments for the GC/GENOMICCONTROL command.

flation factor is calculated using only filtered SNPs. If calculated or explicitely
specified inflation factor is less than 1.0, then genomic control of P-values and
standard errors is not applied, new columns PVALUE gc and STDERR gc are
filled with corresponding original values.

Example 21

RENAME pval pvalue

RENAME se stderr

PVALUE pvalue

STDERR stderr

GC ON

PROCESS input_file_1.txt

GC OFF

PROCESS input_file_2.csv

GC 1.1

PROCESS input_file_3.txt

�

10.1.6 Effective Sample Size

By default, the gwasformat() computes the effective sample size based on
IMP QUALITY and N columns. The computed values are saved to the new
column N effective.

10.2 GWAS Data Files Annotation

Often there is a need to annotate markers in GWAS data files with regions (e.g.
genes). The annotate() function and its parallel version pannotate() allow to

28



quickly annotate every marker in GWAS data files with regions that contain it
or fall in a specified windows around it (e.g. +/-50kb, +/-100kb and etc). The
arbitrary number of windows of various sizes can be specified. The regions with
their chromosomal coordinates must be provided in a separate file. Therefore,
it is responsibility of an analyst to prepare the list of regions of interest with
chromosomal positions on required human genome build version. It is possible
to annotate markers if only their names are available in GWAS data files, or
if there is a need to change chromosomal positions (e.g. if different version of
human genome build should be used). In this case, their chromosomal positions
must be provided in a separate map file.

10.2.1 Input Script

The annotation instructions are provided to annotate() through the input script
that is identical to the script required by gwasqc(). Additional commands are
supported allowing to specify files with regions for annotation and map files
with chromosomal coordinates for markers, if needed. Example 22 illustrates
the content of a hypothetical input script file.

Example 22

# Description (meaning) of the columns in input files

# with GWAS data to be annotated.

MARKER SNPID

CHR chr

POSITION position

# File with regions.

REGIONS_FILE genes_HGNC_ensembl_rel54_may2009_b36.txt

# Description (meaning) of the columns in file with regions.

REGION_NAME Gene

REGION_CHR Chromosome

REGION_START Start

REGION_END End

# Window sizes around markers.

REGIONS_DEVIATION 0 10000 25000

# Preserve original columns in the output file and append

# columns with annotated regions to the end.

REGIONS_APPEND ON

# Specify prefix for output files with annotation results.

PREFIX annotated_

# Input file with GWAS data to annotate.

PROCESS gwa_data_example_1.txt

# Next file with GWAS data will be annotated using marker

# chromosomal positions in the external map file.

29



MAP_FILE map_b37.txt

# Description (meaning) of the columns in map file.

MAP_MARKER snpid

MAP_CHR chr_b37

MAP_POSITION pos_b37

# Change the regions file.

REGIONS_FILE genes_HGNC_ensembl_rel67_may2012_b37.txt

# Change window sizes around markers.

REGIONS_DEVIATION 0 25000 50000

# Output only columns with annotated regions, marker

# names and their chromosomal positions.

REGIONS_APPEND OFF

# Another input file with GWAS data to annotate.

PROCESS gwa_data_example_2.tbl

�

10.2.2 Specifying The Input Data Files

The names of the GWAS data files are specified in the input script with the
command PROCESS (one line per file). A different directory path can be
specified for each file.

Example 23

PROCESS input_file_1.txt\cr

PROCESS /dir_1/dir_2/input_file_2.csv

The annotation is applied first to input file 1.txt and then to in-
put file 2.csv. �

10.2.3 Specifying The Regions Files

The names of the regions (e.g. with genes) files are specified in the input script
with the command REGIONS FILE. In the same script different regions files
can be specified for different GWAS data files. Also different directory path can
be specified for each regions file.

Example 24

REGIONS_FILE genes_file_1.txt\cr

PROCESS input_file_1.txt\cr

REGIONS_FILE /dir_1/dir_2/genes_file_2.csv\cr

PROCESS input_file_2.csv\cr

PROCESS input_file_3.txt

The annotation is applied first to input file 1.txt using regions from
genes file 1.txt file. Then, files input file 2.csv and input file 3.txt are
annotated with regions in genes file 2.csv file. �

30



10.2.4 Specifying The Map Files

The names of the map files are specified in the input script with the command
MAP FILE. In the same script different map files can be specified for different
GWAS data files. Also different directory path can be specified for each map
files.

Example 25

MAP_FILE map_file_1.txt

REGIONS_FILE genes_file_1.txt

PROCESS input_file_1.txt

MAP_FILE /dir_1/dir_2/map_file_2.csv

REGIONS_FILE /dir_1/dir_2/genes_file_2.csv

PROCESS input_file_2.csv

PROCESS input_file_3.txt

The annotation is applied first to input file 1.txt using marker genomic
positions in map file 1.txt file and regions in genes file 1.txt file. Then,
files input file 2.csv and input file 3.txt are annotated with regions in
genes file 2.csv file using marker genomic positions in map file 2.csv.
�

10.2.5 Specifying Column Names in Input Data Files

In table 11 the complete list of default column names that must be present in
the GWAS data files for annotation is reported. These names identify uniquely
the items in the GWAS data file for annotation purposes.

Default column name(s) Description
MARKER Marker name
CHR Chromosome number or name
POSITION Marker position

Table 11: The default column names for annotation.

Given that different names can be provided for each GWAS data file, anno-
tate() allows to redefine the default values for every input file in the input script.
The redefinition command consists of the default column name followed by the
new column name. When the map file is specified using command MAP FILE,
then CHR and POSITION columns in the GWAS data file are not required.

Example 26 Let’s assume to have two input files, input file 1.txt and
input file 2.csv. In the input file 1.txt, the column names for marker
name, chromosome name and position are SNPID, CHR and POS, re-
spectively. In the input file 2.csv, the column names for marker name
is the same as in input file 1.txt, but the column names for the chro-
mosome and position are chromosome and position, respectively. The
correct column redefinition is as follows:

MARKER SNPID

POSITION POS

31



PROCESS input_file_1.txt

CHR chromosome

POSITION position

PROCESS input_file_2.csv

There are no need to define the CHR field for the input file 1.txt, since
it matches the default name. �

10.2.6 Specifying Column Names in Regions Files

In table 12 the complete list of default column names for the regions file is
reported. These names identify uniquely the items in the regions file.

Default column name(s) Description
REGION NAME Region name (e.g. gene name)
REGION CHR Chromosome number or name
REGION START Region (e.g. gene) start position
REGION END Region (e.g.) end position

Table 12: The default column names in regions file.

Given that different names can be provided for each regions file, annotate()
allows to redefine the default values for every regions file in the input script.
The redefinition command consists of the default column name followed by the
present column name.

Example 27 Let’s assume to have two map files, region file 1.txt
and region file 2.csv. In the region file 1.txt, the column names for the
region name, chromosome, start and end position are name, chr, RE-
GION START and REGION END, respectively. In the region file 2.csv,
the column name for the region name and chromosome are the same as
in regions file 1.txt, but the column names for the region start and end
positions are start and end, respectively. The correct column redefini-
tion is as follows:

REGIONS_FILE genes_file_1.txt

REGION_NAME name

REGION_CHR chr

PROCESS input_file_1.txt

REGIONS_FILE genes_file_2.csv

REGION_START start

REGION_END end

PROCESS input_file_2.csv

There is no need to define the REGION START and REGION END
fields for genes file 1.txt regions file. Also there is no need to redefine
REGION NAME and REGION CHR fields for the genes file 2.csv map
file. �

32



10.2.7 Specifying Column Names in Map Files

In table 13 the complete list of default column names for the map file is reported.
These names identify uniquely the items in the map file.

Default column name(s) Description
MAP MARKER Marker name
MAP CHR Chromosome number or name
MAP POSITION Marker position

Table 13: The default column names in map file.

Given that different names can be provided for each map file, annotate() al-
lows to redefine the default values for every map file in the input script. The re-
definition command consists of the default column name followed by the present
column name.

Example 28 Let’s assume to have two map files, map file 1.txt and
map file 2.csv. In the map file 1.txt, the column names for marker
name, chromosome and position are name, MAP CHR and pos, respec-
tively. In the map file 2.csv, the column name for the marker name and
chromosome are the same as in map file 1.txt, but the column name
for the marker position is map pos. The correct column redefinition is
as follows:

MAP_FILE map_file_1.txt

MAP_MARKER name

MAP_POSITION pos

REGIONS_FILE genes_file_1.txt

PROCESS input_file_1.txt

MAP_FILE map_file_2.csv

MAP_POSITION map_pos

REGIONS_FILE genes_file_2.csv

PROCESS input_file_2.csv

There is no need to define the MAP CHR field for both map files. Also
there is no need to redefine MAP MARKER for the genes file 2.csv
map file. �

10.2.8 Specifying Window Size For Annotation

Every marker in the GWAS data file is annotated with the regions (e.g. genes)
that fall in a particular window around it. annotate() allows to specify multi-
ple window sizes using command REGIONS DEVIATION. Command RE-
GIONS DEVIATION is followed by an arbitrary number of positive integers
that specify window sizes around markers in base pairs. Each specified win-
dow size results in a new output column where all regions overlapping with this
window are reported. The ouptut columns are ordered by window size start-
ing with the smallest. Therefore, every new output column represents bigger
window size and lists only those regions that were not reported previously. If
REGIONS DEVIATION is not specified, then the default window sizes are

33



0, 100000 and 250000 (i.e. 0, +/-100kb and +/- 250kb around marker). If 0 is
specified, then only regions that include the marker are reported.

Example 29

REGIONS_FILE genes_file_1.txt

REGIONS_DEVIATION 0 50000 100000

PROCESS input_file_1.txt

REGIONS_DEVIATION 0 100000 250000 500000

PROCESS input_file_2.csv

Every marker in input file 1.txt will be annotated with regions that con-
tains it or are within +/-50kb and +/-100kb windows around it. While
every marker in input file 2.csv will be annotated with regions that
contains it or are within +/-100kb, +/-250kb and +/-500kb windows
around it. �

10.2.9 Specifying Output Format

Often GWAS data file contains many columns that are not required in the output
files with annotation results. By default, in addition to columns with annotated
regions, annotate() outputs only columns with marker name, chromosome name
and position. This behaviour can be modified for every input file in the input
script using the command REGIONS APPEND. Table 14 lists all possible
arguments.

Argument Description
OFF Only the original columns with marker name,

chromosome name and position are preserved.
Columns with annotated regions are appended to
the end. (default)

ON All the original columns are preserved and
columns with annotated regions are appended to
the end.

Table 14: The list of arguments for the REGIONS APPEND command.

Example 30

REGIONS_FILE genes_file_1.txt

REGIONS_APPEND ON

PROCESS input_file_1.txt

REGIONS_APPEND OFF

PROCESS input_file_2.csv

�

34



References

[1] Cristen J. Willer, Yun Li, and Gonçalo R. Abecasis. (2010) METAL: fast
and efficient meta-analysis of genomewide association scans. Bioin-
formatics 26: 2190-2191.

[2] Paul I.W. de Bakker, Manuel A.R. Ferreira, Xiaoming Jia, Benjamin M.
Neale, Soumya Raychaudhuri, and Benjamin F. Voight (2008) Practical
aspects of imputation-driven meta-analysis of genome-wide asso-
ciation studies. Hum. Mol. Genet. 17: R122-R128.

[3] H. Cramer (1946) Mathematical Methods of Statistics. Princeton:
Princeton University Press.

[4] R.A. Fisher (1930) The moments of the distribution for normal sam-
ples of measures of departure from normality. Proc. R. Soc. Series A
130:16-28.

[5] D.N. Joanes, C.A. Gill (1998) Comparing Measures of Sample Skew-
ness and Kurtosis. J. Royal Stat. Soc. Series D (The Statistician)
47(1):183-189.

35



Index

ALLELE, 12
ALLELE1, 12
ALLELE2, 12
AVPOSTPROB, 12

BOXPLOTWIDTH, 17

CALLRATE, 12, 14
CASESENSITIVE, 13
CHR, 12, 31
COMMA, 11

EFFECT, 12

FREQLABEL, 12, 14, 15, 27

GC, 28
GENOMICCONTROL, 28

HQ SNP, 14, 18, 27
HWE PVAL, 12, 14

IMP, 15
IMP QUALITY, 12, 14, 15, 27, 28
IMPUTED, 12

MAF, 15
MAP CHR, 33
MAP FILE, 31
MAP MARKER, 33
MAP POSITION, 33
MARKER, 12, 31
MISSING, 11

N, 12, 28
N effective, 28

ORDER, 26

POSITION, 12, 31
PREFIX, 16
PROCESS, 10, 30
PVALUE, 12, 14, 28
PVALUE gc, 28

REGION CHR, 32
REGION END, 32
REGION NAME, 32
REGION START, 32

REGIONS APPEND, 34
REGIONS DEVIATION, 33
REGIONS FILE, 30
RENAME, 26

SEMICOLON, 11
SEPARATOR, 11
STDERR, 12, 14, 28
STDERR gc, 28
STRAND, 12

TAB, 11

USED FOR IMP, 12

VERBOSITY, 16

WHITESPACE, 11

36


	Introduction
	Installation
	Windows
	Unix
	Mac OS X

	The Quality Control Workflow
	GWAS Data Files
	The Input Script
	Listing the Input Data Files
	Describing the Input Data Columns
	Field Separator
	Missing Values
	Column Names
	Case Sensitivity

	Specifying Data Filters
	Implausible Values Filters
	High Quality Filters
	Plotting Filters

	Controlling The Output
	Output File Names
	Verbosity Level For Graphical Output
	Number And Content Of Plots


	The Output Files
	Example
	Parallel Processing
	Between-study comparisons
	Comparing skewness and kurtosis of effect size distribution
	Precision of the effect estimates by sample size

	Additional Tools
	GWAS Data Files Formatting
	Input Script
	Renaming Columns
	Ordering Columns
	Filtering
	Inflation Factor and Genomic Control
	Effective Sample Size

	GWAS Data Files Annotation
	Input Script
	Specifying The Input Data Files
	Specifying The Regions Files
	Specifying The Map Files
	Specifying Column Names in Input Data Files
	Specifying Column Names in Regions Files
	Specifying Column Names in Map Files
	Specifying Window Size For Annotation
	Specifying Output Format


	Index

